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Abstract. This paper describes how fitness inheritance can be used to
estimate fitness for a proportion of newly sampled candidate solutions
in the Bayesian optimization algorithm (BOA). The goal of estimating
fitness for some candidate solutions is to reduce the number of fitness
evaluations for problems where fitness evaluation is expensive. Bayesian
networks used in BOA to model promising solutions and generate the new
ones are extended to allow not only for modeling and sampling candidate
solutions, but also for estimating their fitness. The results indicate that
fitness inheritance is a promising concept in BOA, because population-
sizing requirements for building appropriate models of promising solu-
tions lead to good fitness estimates even if only a small proportion of
candidate solutions is evaluated using the actual fitness function. This
can lead to a reduction of the number of actual fitness evaluations by a
factor of 30 or more.

1 Introduction

To ensure reliable convergence to a global optimum, genetic and evolutionary
algorithms (GEAs) must often maintain a large population of candidate solu-
tions for a number of iterations. However, in many real-world problems, fitness
evaluation is computationally expensive and evaluating even moderately sized
populations of candidate solutions is intractable. For example, fitness evaluation
may include a large finite element analysis, it may consist of a complex traffic
simulation, or it may require interaction with a human expert.

This leads to an interesting question: Would it be possible to make GEAs
evolve not only the population of candidate solutions, but also a model of fit-
ness, which could be used to evaluate a certain proportion of newly generated
candidate solutions (fitness inheritance)? Fortunately, the answer to the above
question is positive, and a few studies have been made to support this argument.
Methods were proposed for fitness inheritance in the simple genetic algorithm
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(GA) [1] and the univariate marginal distribution algorithm (UMDA) [2]. In
both cases, the results were promising and suggested that fitness inheritance
can significantly reduce the number of fitness evaluations.

The purpose of this paper is to propose a method that uses models of promis-
ing solutions developed by the Bayesian optimization algorithm (BOA) [3,4] to
model the fitness landscape and estimate fitness of newly generated candidate
solutions. Two types of models are considered: (1) traditional Bayesian networks
with full conditional probability tables (CPTs) used in BOA and (2) Bayesian
networks with local structures used in BOA with decision graphs (dBOA) [5]
and the hierarchical BOA (hBOA) [6,7]. Since the model in BOA captures sig-
nificant nonlinearities in the fitness landscape, using this model as the basis for
developing a model of the fitness landscape seems to be a promising approach.
Of course, other methods, such as neural networks or various regression models,
could be used instead. The proposed method is examined on BOA with decision
trees on three example problems: onemax, concatenated traps of order 4, and
concatenated traps of order 5. The results indicate that fitness inheritance is
beneficial in BOA even if only less than 1% of candidate solutions are evaluated
using the actual fitness function. It turns out that due to the population sizing
requirements for creating a correct model of promising solutions, the more fitness
inheritance, the better.

The paper starts by discussing BOA and previous fitness inheritance studies.
Section 4 presents the proposed method for fitness inheritance in BOA. Section 5
presents and discusses experimental results. Section 6 summarizes and concludes
the paper.

2 Bayesian Optimization Algorithm

Probabilistic model-building genetic algorithms (PMBGAs) [8] replace tradi-
tional variation operators of genetic and evolutionary algorithms [9,10] by build-
ing a probabilistic model of promising solutions and sampling the model to gen-
erate new candidate solutions. The Bayesian optimization algorithm (BOA) [3]
uses Bayesian networks to model candidate solutions.

BOA evolves a population of candidate solutions to the given problem. The
first population of candidate solutions is usually generated randomly accord-
ing to a uniform distribution over all solutions. The population is updated for
a number of iterations using two basic operators: (1) selection, and (2) varia-
tion. The selection operator selects better solutions at the expense of the worse
ones from the current population, yielding a population of promising candi-
dates. The variation operator starts by learning a probabilistic model of the
selected solutions that encodes features of these promising solutions and the
inherent regularities. Bayesian networks are used to model promising solutions
because Bayesian networks are among the most powerful tools for capturing and
representing decomposition [11], which is an inherent feature of most complex
real-world systems [12]. The variation operator then proceeds by sampling the
probabilistic model to generate new solutions, which are incorporated into the
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original population. Here, a simple replacement scheme is used where new solu-
tions fully replace the original population. A more detailed description of BOA
can be found in [4].

The remainder of this section discusses Bayesian networks, which are going
to serve as the basis for developing the model of fitness in BOA.

2.1 Bayesian Networks

Bayesian networks (BNs) [13,14,15] are among the most popular graphical mod-
els, where statistics, modularity, and graph theory are combined in a practical
tool for estimating probability distributions and inference. A Bayesian network
is defined by two components: (1) a structure, and (2) parameters. The structure
is encoded by a directed acyclic graph with the nodes corresponding to the vari-
ables in the modeled data set (in this case, to the positions in solution strings)
and the edges corresponding to conditional dependencies. The parameters are
represented by a set of conditional probability tables (CPTs) specifying a condi-
tional probability for each variable given any instance of the variables that the
variable depends on.

A Bayesian network encodes a joint probability distribution given by

p(X) =
n∏

i=1

p(Xi|Πi), (1)

where X = (X1, . . . , Xn) is a vector of all the variables in the problem; Πi is
the set of parents of Xi (the set of nodes from which there exists an edge to Xi);
and p(Xi|Πi) is the conditional probability of Xi given its parents Πi.

A directed edge relates the variables so that in the encoded distribution,
the variable corresponding to the terminal node is conditioned on the variable
corresponding to the initial node. More incoming edges into a node result in a
conditional probability of the variable with a condition containing all its parents.
In addition to encoding dependencies, each Bayesian network encodes a set of
independence assumptions. Independence assumptions state that each variable is
independent of any of its antecedents in the ancestral ordering, given the values
of the variable’s parents.

To learn Bayesian networks, a greedy algorithm is usually used for its ef-
ficiency and robustness. The greedy algorithm starts with an empty Bayesian
network. Each iteration then adds an edge into the network that improves qual-
ity of the network the most. Network quality can be measured by any popu-
lar scoring metric for Bayesian networks, such as the Bayesian Dirichlet metric
with likelihood equivalence (BDe) [16,17] or the Bayesian information criterion
(BIC) [18]. The learning is terminated when no more improvement is possible.

2.2 Conditional Probability Tables (CPTs)

Conditional probability tables (CPTs) store conditional probabilities p(Xi|Πi)
for each variable Xi. The number of conditional probabilities for a variable that
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is conditioned on k parents grows exponentially with k. For binary variables,
for instance, the number of conditional probabilities is 2k, because there are
2k instances of k parents and it is sufficient to store the probability of the
variable being 1 for each such instance. Figure 1 shows an example CPT for
p(X1|X2, X3, X4).

Nonetheless, the dependencies sometimes also contain regularities. Further-
more, the exponential growth of full CPTs often obstructs the creation of models
that are both accurate and efficient. That is why Bayesian networks are often
extended with local structures that allow more efficient representation of local
conditional probability distributions than full CPTs [19,20].

2.3 Decision Trees and Graphs for Conditional Probabilities

Decision trees are among the most flexible and efficient local structures, where
conditional probabilities of each variable are stored in one decision tree. Each
internal (non-leaf) node in the decision tree for p(Xi|Πi) has a variable from Πi

associated with it and the edges connecting the node to its children stand for
different values of the variable. For binary variables, there are two edges coming
out of each internal node; one edge corresponds to 0, whereas the other edge
corresponds to 1. For more than two values, either one edge can be used for each
value, or the values may be classified into several categories and each category
would create an edge.

Each path in the decision tree for p(Xi|Πi) that starts in the root of the
tree and ends in a leaf encodes a set of constraints on the values of variables
in Πi. Each leaf stores the value of a conditional probability of Xi = 1 given
the condition specified by the path from the root of the tree to the leaf. A
decision tree can encode the full conditional probability table for a variable with
k parents if it splits to 2k leaves, each corresponding to a unique condition.
However, a decision tree enables more efficient and flexible representation of
local conditional distributions. See Figure 1b for an example decision tree for
the conditional probability table presented earlier.

A decision graph allows more edges to terminate in a single node. In other
words, internal nodes in the decision tree are allowed to share children and,
as a result, each node can have more than one parent. That makes this repre-
sentation even more flexible. However, our experience indicates that, in BOA,
decision graphs usually do not provide better performance than decision trees.
See Figure 1c for an example decision graph.

To learn Bayesian networks with decision trees, a decision tree for each vari-
able Xi is initialized to an empty tree with a univariate probability of Xi = 1.
In each iteration, each leaf of each decision tree is split to determine how quality
of the current network improves by executing the split, and the best split is
performed. The learning is finished when no splits improve the current network
anymore. Quality of each model can be estimated using any popular scoring
metric. Here we use a combination of the BDe [16,17] and BIC [18] metrics,
where the BDe score is penalized with the number of bits required to encode
parameters [4]. For decision graphs, a merge operation is introduced to allow for
merging two leaves of any (but always the same) decision graph.
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Fig. 1. A conditional probability table for p(X1|X2, X3, X4) using traditional repre-
sentation (a) as well as local structures (b and c).

3 Previous Fitness Inheritance Studies

Despite the importance of fitness inheritance in robust population-based search,
surprisingly few studies of fitness inheritance can be found. This section reviews
the most important studies.

3.1 Fitness Inheritance in the Simple GA

Smith, Dike, and Stegmann [1] proposed two approaches to fitness inheritance
in the simple GA [10]. The first approach is to compute the fitness of an off-
spring as the average fitness of its parents. The second approach is to consider
a weighted average based on how similar the offspring is to each parent. The
results indicated that GAs with fitness inheritance outperformed those without
inheritance. However, the above study of fitness inheritance did not consider the
effects of fitness inheritance on crucial GA parameters such as the population
size and the number of generations. As a result, the speed-up achieved by using
fitness inheritance could not be estimated properly.

Zhang, Julstrom, and Chen [21] used the aforementioned fitness inheritance
model in the simple GA for design of vector quantization codebooks.

3.2 Fitness Inheritance in PMBGAs

Sastry, Goldberg, and Pelikan [2] considered the univariate marginal distribu-
tion algorithm (UMDA), which is one of the simplest PMBGAs. Using fitness
inheritance in UMDA introduces new challenges, because UMDA does not use
two-parent recombination and therefore it is difficult to find direct correspon-
dence between parents and their offspring. Instead, Sastry et al. extend the
probabilistic model to allow for estimating fitness of newly sampled candidate
solutions.

UMDA models the population of promising solutions after selection using the
probability vector, which stores the probability of a 1 at each position. These
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probabilities are then used to sample new candidate solutions. To incorporate
fitness inheritance, the probability vector p = (p1, p2, . . . , pn) is extended to
include additional two statistics f̄(Xi = 0) and f̄(Xi = 1) for each string position
i. The term f̄(Xi = 0) denotes the average fitness of all solutions where the ith
bit is 0; analogously, the term f̄(Xi = 1) denotes the average fitness of solutions
with the ith bit equal to 1. The fitness of each new solution can then estimated
as

fest(X1, X2, . . . , Xn) = f̄ +
n∑

i=1

(
f̄(Xi) − f̄

)
, (2)

where f̄ is the average fitness of all solutions used to estimate the fitness.
Sastry et al. [2] developed theory for UMDA on onemax that estimates the

number of actual fitness evaluations when a given proportion of candidate solu-
tions inherits fitness, whereas the remaining candidate solutions are evaluated
using the actual fitness. The basic idea is to start by adapting the population
sizing and time to convergence models to UMDA with fitness inheritance, and
relate these quantities to their counterparts in standard UMDA. If optimal pop-
ulation size is used in both cases, Sastry et al. showed that only about 20%
evaluations can be saved. However, if the same population size is used in both
cases, the number of evaluations decreases by a factor of more than three.

4 Modeling Fitness in BOA

This section describes how the fitness model is built and updated using Bayesian
networks, and how new candidate solutions can be evaluated using the model.
Both Bayesian networks with full CPTs as well as the ones with local structures
are discussed. The section also discusses where the statistics can be acquired
from to build an accurate fitness model.

4.1 Modeling Fitness Using Bayesian Networks

In UMDA, probabilities of a 1 at each position that form the probability vector
are each coupled with an average fitness of a 0 and a 1 at that position. Analog-
ically, Bayesian networks can be extended to incorporate an average fitness of a
0 and a 1 for each statistic stored by the model.

In BOA, for every variable Xi and each possible value xi of Xi, an average
fitness of solutions with Xi = xi must be stored for each instance πi of Xi’s
parents Πi. In the binary case, each row in the conditional probability table is
thus extended by two additional entries. Figure 2a shows an example conditional
probability table extended with fitness information based on the conditional
probability table presented in Figure 1a. The fitness can then be estimated as

fest(X1, X2, . . . , Xn) = f̄ +
n∑

i=1

(
f̄(Xi|Πi) − f̄(Πi)

)
, (3)

where f̄(Xi|Πi) denotes the average fitness of solutions with Xi and Πi, and
f̄(Πi) is the average fitness of all solutions with Πi. Clearly,
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Fig. 2. Fitness inheritance in a conditional probability table for p(X1|X2, X3, X4) (a)
and its representation using local structures (b and c).

f̄(Πi) =
∑

Xi

p(Xi|Πi)f̄(Xi|Πi). (4)

4.2 Modeling Fitness Using Bayesian Networks with Decision
Graphs

A similar method as for full CPTs can be used to incorporate fitness information
into Bayesian networks with decision trees or graphs. The average fitness of
each instance of each variable must be stored in every leaf of a decision tree
or graph. Figure 2 shows an example decision tree and graph extended with
fitness information based on the decision tree and graph presented earlier in
Figure 1. The fitness averages in each leaf are restricted to solutions that satisfy
the condition specified by the path from the root of the tree to the leaf.

Since decision graphs enable better encoding of statistical dependencies in
the selected population of selected solutions, where the statistical dependencies
originate in nonlinearities in the fitness function [22], using decision graphs for
fitness inheritance should also improve fitness inheritance.

4.3 Where to Inherit Fitness from?

We still have not faced the following question: Where to obtain information
to compute statistics used for fitness inheritance? More specifically, for each
instance xi of Xi and each instance πi of Xi’s parents Πi, we must compute
the average fitness of all solutions with Xi = xi and Πi = πi. Here we use two
sources for computing the fitness-inheritance statistics:
1. Selected parents that were evaluated using the actual fitness function, and
2. the offspring that were evaluated using the actual fitness function.

The reason for restricting computation of fitness-inheritance statistics to se-
lected parents and offspring is that the probabilistic model used as the basis for
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selecting relevant statistics represents nonlinearities in the population of par-
ents and the population of offspring. Since it is best to maximize learning data
available, it seems natural to use these two populations to compute the fitness-
inheritance statistics. The reason for restricting input for computing these statis-
tics to solutions that were evaluated using the actual fitness function is that the
fitness of other solutions was estimated only and it involves errors that could
mislead fitness inheritance and propagate through generations. Both using only
those solutions that were evaluated using the actual fitness function and incor-
porating the offspring in estimating inheritance statistics differs from previous
fitness inheritance studies [1,2].

5 Experiments

This section describes experiments and provides experimental results. Test prob-
lems are described first. Next, experimental results are presented and discussed.

5.1 Onemax

Onemax is a simple linear function that computes the sum of bits in the input
binary string:

fonemax(X1, X2, . . . , Xn) =
n∑

i=1

Xi, (5)

where (X1, X2, . . . , Xn) denotes the input binary string of n bits. In onemax,
the fitness contribution of each bit is independent of its context. That is why a
simple model used in UMDA that considers each variable independently of other
variables suffices and yields convergence to the optimum in about O(n log n)
evaluations. However, any other models of bounded complexity should work
well, and practically any crossover operator used in standard GAs should also
suffice.

In the model of fitness developed by BOA, the average fitness of a 1 in any
leaf should be approximately 0.5, whereas the average fitness of a 0 in any leaf
should be approximately −0.5. As a result, solutions will get penalized for 0s,
while they would be rewarded for 1s. The average fitness will vary throughout
the run. This paper considers onemax of n = 50 bits.

5.2 Concatenated 4-Bit Trap

In concatenated 4-bit traps [23,24], the input string is first partitioned into in-
dependent groups of 4 bits each. This partitioning should be unknown to the
algorithm, but it should not change during the run. A 4-bit trap function is ap-
plied to each group of 4 bits and the contributions of all traps are added together
to form the fitness. Each 4-bit trap is defined as follows:

trap4(u) =
{

4 if u = 4
3 − u otherwise , (6)
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where u is the number of 1s in the input string of 4 bits. An important feature of
traps is that in each of the 4-bit traps, all 4 bits must be treated together, because
all statistics of lower order lead the algorithm away from the optimum [24]. That
is why most crossover operators as well as the model in UMDA will fail at solving
this problem faster than in exponential number of evaluations, which is just as
bad as blind search.

Unlike in onemax, f̄(Xi = 0) and f̄(Xi = 1) depend on the state of the search
because the distribution of contexts of each bit changes over time and bits in
a trap are not independent. The context of each leaf also determines whether
f̄(Xi = 0) < f̄(Xi = 1) or f̄(Xi = 0) > f̄(Xi = 1) in the leaf. This paper
considers a trap consisting of 10 copies of the 4-bit trap, where the total number
of bits is n = 40.

5.3 Concatenated 5-Bit Trap

Concatenated traps of order 5 can be defined analogically to traps of order 4,
but instead of dealing with groups of 4 bits, groups of 5 bits are considered. The
contribution of each group of 5 bits is computed as

trap5(u) =
{

5 if u = 5
4 − u otherwise , (7)

where u is the number of 1s in the input string of 5 bits. Traps of order 5 also
necessitate that all bits in each group are treated together, because statistics of
lower order are misleading.

Average fitness values f̄(Xi) depend on context similarly as for traps of order
4, and they thus follow similar dynamics. This paper considers a trap consisting
of 10 copies of the 5-bit trap, where the total number of bits is n = 50.

5.4 Experimental Results

On each test problem, the following fitness inheritance proportions were con-
sidered: 0 to 0.9 with step 0.1, 0.91 to 0.99 with step 0.01, and 0.991 to 0.999
with step 0.001. For each test problem and fitness inheritance proportion, 30
independent experiments were performed. Each experiment consisted of 10 in-
dependent runs with the minimum population size to ensure convergence to a
solution within 10% of the optimum (i.e., with at least 90% correct bits) in
all 10 runs. For each experiment, bisection method was used to determine the
minimum population size, and the number of evaluations (excl. the evaluations
done using the model of fitness) was recorded. The average of 10 runs in all
experiments was then computed and displayed as a function of the proportion
of candidate solutions for which fitness was estimated using the fitness model.

The results on onemax, traps of order 4, and traps of order 5, are shown
in figures 3 and 4. In all experiments, the number of actual fitness evaluations
decreases with the inheritance proportion and it reaches the optimum when the
proportion of candidate solutions for fitness inheritance is more than 99%. That
means that, considering only the actual fitness evaluations, evaluating less than
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Fig. 3. Results on a 50-bit onemax.
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(a) A 40-bit trap of order 4.
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(b) A 50-bit trap of order 5.

Fig. 4. Results on concatenated traps of order 4 and 5.

1% of candidate solutions with the actual fitness seems to be beneficial. As a
result, the number of evaluations of the actual fitness can be decreased by a
factor of more than 31 for onemax, 32 for the trap of order 4, and 53 for the trap
of order 5. Although the actual savings depend on the problem considered, it
can be expected that fitness inheritance enables significant reduction of fitness
evaluations on many problems because deceptive problems of bounded difficulty
test BOA on the boundary of its design envelope to determine if BOA can solve
a class of nearly decomposable problems [25].

Considering only the actual fitness evaluations ignores time complexity of
selection, model construction, generation of new candidate solutions, and fitness
estimation. Combining these factors with the complexity estimate for the actual
fitness evaluation can be used to compute the optimal proportion of candidate
solutions to evaluate using fitness inheritance. Nonetheless, the results presented
in this paper clearly indicate that using fitness inheritance in BOA can reduce
the number of solutions that must be evaluated using the actual fitness function
by a factor of 30 or more. Consequently, if fitness evaluation is a bottleneck,
there is a lot of space for improvement using fitness inheritance in BOA.
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6 Summary and Conclusions

Fitness inheritance enables genetic and evolutionary algorithms to evaluate only
a certain proportion of candidate solutions using the actual fitness function,
while the fitness of remaining solutions is computed using a model of the fitness
landscape updated on the fly. Using fitness models that can be updated and
used efficiently can significantly speed up solution to problems where fitness
evaluation is computationally expensive.

This paper showed that while fitness inheritance yields only moderate speed-
ups of about 20% in simple GAs and UMDA, in BOA the benefits of using
fitness inheritance become more significant. Due to rather large population-sizing
requirements for creating an adequate probabilistic model of promising solutions
in BOA, the number of actual function evaluations decreases even if less than
1% of candidate solutions are evaluated using the actual fitness function, while
the fitness of the remaining solutions is estimated using only its model. That is
an important result, because BOA and other advanced PMBGAs often require
large populations, and evaluating large populations can become intractable for
problems with computationally expensive fitness evaluation.

An important topic for future work is to incorporate fitness inheritance in
presence of niching, which can lead to accumulation of candidate solutions whose
fitness is overestimated. Resolving this problem would enable the use of fitness
inheritance in the hierarchical BOA (hBOA) [6,7], which combines BOA with
local structures and niching. Another important topic is to develop theory that
extends theoretical work on fitness inheritance in UMDA to BOA and other
competent GAs. Finally, it is important to apply the proposed fitness inheritance
model to solve challenging real-world problems with expensive fitness evaluation.
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